biomass program

Thermochemical Conversion of Corn Stover

DOE OBP Thermochemical Platform Review Meeting June 7-8, 2005

James L. Gaddy, President Bioengineering Resources, Inc.

biomass program

Project Background / Rationale

- BRI has been developing and optimizing gasification / fermentation technology in the laboratory and pilot plant for 15 years.
- This project was initiated October 2005 under the USDA/DOE Biomass Research and Development Initiative.
- The purpose of this project is to develop and demonstrate at pilot scale an optimal gasification / fermentation process to utilize corn stover, with emphasis placed on the integration of the ag residue ethanol facility with conventional grain alcohol processes.
- This project is in Stage 2 of the Commercial Track, of the Ag Residue Processing sector of the DOE Biorefinery Thermochemical Platform.

Project Overview

Pathways and Milestones – C-level and Project Milestones

biomass program

Ag Residues

Perennial Grasses
Woody Crops

Pulp and Paper

Forest Products

Validate gasification performance

Validate gas cleanup, performance

Project Milestones	Туре	Performance Expectations	
Corn Stover Delivery/Conditions	E	Feedstock delivery \$30/ton; define optimal particle size and moisture content.	9/06
Corn Stover Gasification	D	Define temperatures to minimize tars; determine enriched O_2 concentration.	9/06
Syngas Cleanup	E	Determine fermentability of syngas with scrubbing and activated carbon.	6/06

Pathways and Milestones – C-level and Project Milestones

Ag Residues

Perennial Grasses
Woody Crops

Pulp and Paper

Forest Products

Validate integrated production of product(s) from syngas

Project Milestones	Туре	Performance Expectations	Due Date
Syngas Fermentation	D	Fermenter productivity of 50 g/L-day with ethanol concentration of >20 g/L.	3/07
Emissions Measurement	E	Meet EPA and state emissions requirements for air, ash and water discharges.	3/07
By-Product Utilization	E	Define value of ash as soil amendment and spent cells as animal feed supplement.	1/07
Design/Economics	D	Determine capital and operating costs with a 15 percent ROI at current ethanol prices.	6/07

Technical Feasibility and Risks

biomass program

Process feasibility

- Clostridium ljungdahlii, the first bacterium able to convert CO, CO₂, and H₂ into ethanol, was isolated in 1989.
- Began pilot fermentation of synthetic syngas in 2000.
- Gasification unit added to pilot plant in 2003.
- Successfully demonstrated wood gasification/fermentation over 15 months. Also, MSW, ASR, cotton seed hulls for shorter runs.

Technical Feasibility and Risks

biomass program

Process risks

- Corn stover availability/cost.
- Stover gasification gas composition.
- Stover syngas fermentability toxins impair microorganisms.
- Emissions cannot meet regulations.

Competitive Advantage

biomass program

Competitive Advantage

- Gasification provides potential for near-complete conversion of biomass.
- Fermentation times of two minutes reduces equipment size.
- Waste heat provides all the energy for the ethanol process.
- Synergies with grain alcohol plants significantly reduce capital costs.

biomass program

Project Activities

Task 1. Stover Gasification

- A. Feedstock Condition
- B. Gasifier Temperature
- C. Gasification Efficiency
- D. Enriched Air
- E. Gasifier Capacity

Task 2. Syngas Fermentation

- A. Gas Clean-up
- B. Fermentation
- C. Emissions Measurement
- D. By-Product Utilization

Task 3. Economic Projections

- A. Design and Economics
- B. Energy Efficiency

biomass program

Project Team

Bioengineering Resources, Inc. (BRI)

Burns & McDonnell Engineering Company, Inc.

Chippewa Valley Ethanol Company (CVEC)

Katzen International, Inc.

University of Arkansas

Fayetteville, Arkansas

Kansas City, Missouri

Benson, Minnesota

Cincinnati, Ohio

Fayetteville, Arkansas

biomass program

Summary of Accomplishments

- Stover availability
- Stover acquisition
- Initial stover gasification
- Gasifier feed system redesign
- Enriched oxygen system design
- Preliminary operation with changes

biomass program

Benson, MN Regional Biomass Availability (10⁶ dry tons) (1999 – 2005 Average)

	Present Tillage Methods	Less Tillage	Total Available Biomass*
30 mile radius	1.0	1.5	2.9
50 mile radius	1.4	4.7	9.5
Additional marginal land	0.2	<u>1.1</u>	2.0
Total	1.6	5.8	11.5

^{* -} Includes grass, soybean stubble collection and wheat as a cover crop

biomass program

Farmers' Net Margins by Stover Collection Technique (130 bushels/acre, \$35/dry ton delivered)

Collection Technique	Collection Radius	Margin, \$/acre
Collect as field dried baled, tub grinder	30 mi	3.65
Collect green (wet) forage harvester immediately after grain collection	15 mi.	19.00
Collect green (wet) rake fields to increase collection then forage harvester after grain collection and rak	15 mi.	35.48
Single pass collection of ears & stalks separate grain at collection center	15 mi.	35.00

Corn Stover Bales

Tub Grinder for Bales

Stover from Tub Grinder

biomass program

Anaerobic Cultures Produce Ethanol from CO & H₂

$$6 \text{ CO} + 3 \text{ H}_2\text{O} \rightarrow \text{CH}_3\text{CH}_2\text{OH} + 4 \text{ CO}_2$$

$$6 H2 + 2 CO2 \rightarrow CH3CH2OH + 3 H2O$$

biomass program

Criteria for Gasifier Selection

- Gas Quality High CO, H₂
- Reliability Continuous Operation
- Cost Capital and Operating

biomass program

Consutech Gasifier

Copyright © 2001 Consutech Systems, LLC. All rights reserved.

Gasification Pilot Plant

Pilot Gasifier

Pilot Fermenter

biomass program

Pilot Gasifier Operation (wood)

- Particle size 2 in. minus chips gives best performance
- Moisture content dry (5-10% moisture) gives best gas quality
- Capacity 1.5 TPD (design 1.2 TPD)
- Temperatures 1000°F lower chamber best
 - 2250°F upper chamber minimizes tars

biomass program

Pilot Fermenter Operation (Wood Syngas)

- Gas compositions 10-25 percent CO, 8-22 percent H₂
- Gas conversions 80 percent CO, 30-40 percent H₂
- Reaction rate 40-70 g/L-day
- Temperatures 98° F
- Pressure 0-3 atm gauge
- Variations in gas flow +/- 20 percent per hour no effect
- Water scrubber and carbon bed adequate to remove any toxins for fermentation

biomass program

Initial Gasifier Operation With Corn Stover

- Batch feeding on a 5 minute cycle
- Result was dilute gas compositions

biomass program

To Increase Gas Compositions

Reduce N₂ - Enriched and Pure Oxygen
 (Cost of O₂ justified by lower capital and operating cost)

Add Continuous Feed System

Oxygen Supply

Pure Oxygen Controls

Pure Oxygen Controls

biomass program

Cross-Section View of Dryer, Metering Bin and Conveyors to New Screw Feeder

Plan View of Dryer, Metering Bin and Conveyors to New Screw Feeder

Komar Feeder

Komar Screw

biomass program

Preliminary Stover Gasification Results

Feed Rate – 138 lbs/hr (1.7 tpd)

Particle Size – 3 inch and smaller

Temperature in Lower Chamber – 980°F

Temperature in Upper Chamber – 2200°F

Gas Compositions

 $\begin{array}{cccc} {\sf CO} & & 20 \ {\sf M}_2 & & 15\% \\ {\sf CO}_2 & & 37\% \\ {\sf N}_2 & & 28\% \end{array}$

biomass program

PROJECT SCHEDULE

ID No.	Task/Milestone Description	Planned Start	Actual Start	Planned Completion
1	Stover Gasification			
1.1	Feedstock Condition	10/04	10/04	1/06
1.2	Gasifier Temperature	5/05	6/05	3/06
1.3	Gasification Efficiency	9/05		9/06
1.5	Enriched O ₂ / CO ₂	5/06	6/05	9/06
1.6	Gasifier Capacity	5/05		9/06
2	Syngas Fermentation			
2.1	Gas Clean-up	5/05	6/05	9/06
2.2	Fermentation Experiments	6/05		9/06
2.3	Emissions Measurement	9/05		9/06
2.4	By-Product Utilization	6/05		9/07
3	Design Projections			
3.1	Design / Economics	4/05	3/05	8/07
3.2	Energy Efficiency	9/05		8/07

Critical Issues and Show-stoppers

biomass program

Critical Performance Parameters

- A syngas containing at least 20 percent CO and H₂ must be obtained in gasifying stover in the pilot plant.
- An ethanol productivity of 50 g/L-day must be obtained.
- Emissions for the process (ash, scrubber water, reactor effluent, exhaust gases) must be within State and EPA regulations.
- Process economics must show a return on investment of 15 percent without government subsidies (other than tax credits).

Plans and Resources for Next Stage

biomass program

Next Stage

- Prepare detailed design for prototype stover to ethanol plant at CVEC site in Benson, MN.
 - Scale-up data from pilot plant
 - Katzen / Burns & McDonnell / CVEC produce integrated design for grain / stover facilities
- Determine capital cost and economics
- Build prototype

Plans and Resources for Next Stage

biomass program

Anticipated Expenditures

FY2005 \$695K

FY2006 \$892K

FY2007 \$402K